MakeItFrom.com
Menu (ESC)

EN-MC21210 Magnesium vs. S30615 Stainless Steel

EN-MC21210 magnesium belongs to the magnesium alloys classification, while S30615 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21210 magnesium and the bottom bar is S30615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 48
190
Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 14
39
Fatigue Strength, MPa 70
270
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
75
Shear Strength, MPa 110
470
Tensile Strength: Ultimate (UTS), MPa 190
690
Tensile Strength: Yield (Proof), MPa 90
310

Thermal Properties

Latent Heat of Fusion, J/g 350
340
Maximum Temperature: Mechanical, °C 100
960
Melting Completion (Liquidus), °C 600
1370
Melting Onset (Solidus), °C 570
1320
Specific Heat Capacity, J/kg-K 1000
500
Thermal Conductivity, W/m-K 120
14
Thermal Expansion, µm/m-K 27
16

Otherwise Unclassified Properties

Base Metal Price, % relative 12
19
Density, g/cm3 1.6
7.6
Embodied Carbon, kg CO2/kg material 24
3.7
Embodied Energy, MJ/kg 160
53
Embodied Water, L/kg 980
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
220
Resilience: Unit (Modulus of Resilience), kJ/m3 92
260
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 72
25
Strength to Weight: Axial, points 32
25
Strength to Weight: Bending, points 44
23
Thermal Diffusivity, mm2/s 76
3.7
Thermal Shock Resistance, points 11
16

Alloy Composition

Aluminum (Al), % 1.6 to 2.6
0.8 to 1.5
Carbon (C), % 0
0.16 to 0.24
Chromium (Cr), % 0
17 to 19.5
Copper (Cu), % 0 to 0.010
0
Iron (Fe), % 0 to 0.0050
56.7 to 65.3
Magnesium (Mg), % 96.3 to 98.3
0
Manganese (Mn), % 0.1 to 0.7
0 to 2.0
Nickel (Ni), % 0 to 0.0020
13.5 to 16
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
3.2 to 4.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.010
0