MakeItFrom.com
Menu (ESC)

EN-MC21220 Magnesium vs. 5456 Aluminum

EN-MC21220 magnesium belongs to the magnesium alloys classification, while 5456 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN-MC21220 magnesium and the bottom bar is 5456 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
68
Elongation at Break, % 11
11 to 18
Fatigue Strength, MPa 89
130 to 210
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
26
Shear Strength, MPa 120
190 to 210
Tensile Strength: Ultimate (UTS), MPa 210
320 to 340
Tensile Strength: Yield (Proof), MPa 120
150 to 250

Thermal Properties

Latent Heat of Fusion, J/g 350
390
Maximum Temperature: Mechanical, °C 120
190
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 540
570
Specific Heat Capacity, J/kg-K 1000
900
Thermal Conductivity, W/m-K 65
120
Thermal Expansion, µm/m-K 27
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
29
Electrical Conductivity: Equal Weight (Specific), % IACS 87
97

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 1.7
2.7
Embodied Carbon, kg CO2/kg material 23
9.0
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 990
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20
33 to 46
Resilience: Unit (Modulus of Resilience), kJ/m3 160
170 to 470
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 71
50
Strength to Weight: Axial, points 34
33 to 35
Strength to Weight: Bending, points 46
38 to 40
Thermal Diffusivity, mm2/s 39
48
Thermal Shock Resistance, points 12
14 to 15

Alloy Composition

Aluminum (Al), % 4.4 to 5.5
92 to 94.8
Chromium (Cr), % 0
0.050 to 0.2
Copper (Cu), % 0 to 0.010
0 to 0.1
Iron (Fe), % 0 to 0.0050
0 to 0.4
Magnesium (Mg), % 93.5 to 95.5
4.7 to 5.5
Manganese (Mn), % 0.1 to 0.6
0.5 to 1.0
Nickel (Ni), % 0 to 0.0020
0
Silicon (Si), % 0 to 0.1
0 to 0.25
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.3
0 to 0.25
Residuals, % 0
0 to 0.15