MakeItFrom.com
Menu (ESC)

EN-MC21220 Magnesium vs. AISI 316Ti Stainless Steel

EN-MC21220 magnesium belongs to the magnesium alloys classification, while AISI 316Ti stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21220 magnesium and the bottom bar is AISI 316Ti stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 58
190
Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 11
41
Fatigue Strength, MPa 89
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
82
Shear Strength, MPa 120
400
Tensile Strength: Ultimate (UTS), MPa 210
580
Tensile Strength: Yield (Proof), MPa 120
230

Thermal Properties

Latent Heat of Fusion, J/g 350
290
Maximum Temperature: Mechanical, °C 120
940
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 540
1380
Specific Heat Capacity, J/kg-K 1000
470
Thermal Conductivity, W/m-K 65
15
Thermal Expansion, µm/m-K 27
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 87
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
19
Density, g/cm3 1.7
7.9
Embodied Carbon, kg CO2/kg material 23
4.0
Embodied Energy, MJ/kg 160
55
Embodied Water, L/kg 990
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20
190
Resilience: Unit (Modulus of Resilience), kJ/m3 160
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 71
25
Strength to Weight: Axial, points 34
20
Strength to Weight: Bending, points 46
20
Thermal Diffusivity, mm2/s 39
4.0
Thermal Shock Resistance, points 12
13

Alloy Composition

Aluminum (Al), % 4.4 to 5.5
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.010
0
Iron (Fe), % 0 to 0.0050
61.3 to 72
Magnesium (Mg), % 93.5 to 95.5
0
Manganese (Mn), % 0.1 to 0.6
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.0020
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.7
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.010
0