MakeItFrom.com
Menu (ESC)

EN-MC21220 Magnesium vs. EN 1.4008 Stainless Steel

EN-MC21220 magnesium belongs to the magnesium alloys classification, while EN 1.4008 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21220 magnesium and the bottom bar is EN 1.4008 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 11
17
Fatigue Strength, MPa 89
300
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
76
Tensile Strength: Ultimate (UTS), MPa 210
670
Tensile Strength: Yield (Proof), MPa 120
500

Thermal Properties

Latent Heat of Fusion, J/g 350
280
Maximum Temperature: Mechanical, °C 120
760
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 540
1400
Specific Heat Capacity, J/kg-K 1000
480
Thermal Conductivity, W/m-K 65
25
Thermal Expansion, µm/m-K 27
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 87
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
8.0
Density, g/cm3 1.7
7.8
Embodied Carbon, kg CO2/kg material 23
2.1
Embodied Energy, MJ/kg 160
30
Embodied Water, L/kg 990
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20
100
Resilience: Unit (Modulus of Resilience), kJ/m3 160
630
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 71
25
Strength to Weight: Axial, points 34
24
Strength to Weight: Bending, points 46
22
Thermal Diffusivity, mm2/s 39
6.7
Thermal Shock Resistance, points 12
23

Alloy Composition

Aluminum (Al), % 4.4 to 5.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
12 to 13.5
Copper (Cu), % 0 to 0.010
0
Iron (Fe), % 0 to 0.0050
81.8 to 86.8
Magnesium (Mg), % 93.5 to 95.5
0
Manganese (Mn), % 0.1 to 0.6
0 to 1.0
Molybdenum (Mo), % 0
0.2 to 0.5
Nickel (Ni), % 0 to 0.0020
1.0 to 2.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.010
0