MakeItFrom.com
Menu (ESC)

EN-MC21220 Magnesium vs. S31727 Stainless Steel

EN-MC21220 magnesium belongs to the magnesium alloys classification, while S31727 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21220 magnesium and the bottom bar is S31727 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 58
190
Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 11
40
Fatigue Strength, MPa 89
240
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
78
Shear Strength, MPa 120
430
Tensile Strength: Ultimate (UTS), MPa 210
630
Tensile Strength: Yield (Proof), MPa 120
270

Thermal Properties

Latent Heat of Fusion, J/g 350
290
Maximum Temperature: Mechanical, °C 120
1010
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 540
1390
Specific Heat Capacity, J/kg-K 1000
470
Thermal Expansion, µm/m-K 27
16

Otherwise Unclassified Properties

Base Metal Price, % relative 12
24
Density, g/cm3 1.7
8.0
Embodied Carbon, kg CO2/kg material 23
4.7
Embodied Energy, MJ/kg 160
64
Embodied Water, L/kg 990
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20
200
Resilience: Unit (Modulus of Resilience), kJ/m3 160
190
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 71
24
Strength to Weight: Axial, points 34
22
Strength to Weight: Bending, points 46
20
Thermal Shock Resistance, points 12
14

Alloy Composition

Aluminum (Al), % 4.4 to 5.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17.5 to 19
Copper (Cu), % 0 to 0.010
2.8 to 4.0
Iron (Fe), % 0 to 0.0050
53.7 to 61.3
Magnesium (Mg), % 93.5 to 95.5
0
Manganese (Mn), % 0.1 to 0.6
0 to 1.0
Molybdenum (Mo), % 0
3.8 to 4.5
Nickel (Ni), % 0 to 0.0020
14.5 to 16.5
Nitrogen (N), % 0
0.15 to 0.21
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.010
0