MakeItFrom.com
Menu (ESC)

EN-MC21220 Magnesium vs. S33228 Stainless Steel

EN-MC21220 magnesium belongs to the magnesium alloys classification, while S33228 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21220 magnesium and the bottom bar is S33228 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 58
190
Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 11
34
Fatigue Strength, MPa 89
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
79
Shear Strength, MPa 120
380
Tensile Strength: Ultimate (UTS), MPa 210
570
Tensile Strength: Yield (Proof), MPa 120
210

Thermal Properties

Latent Heat of Fusion, J/g 350
310
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 600
1410
Melting Onset (Solidus), °C 540
1360
Specific Heat Capacity, J/kg-K 1000
470
Thermal Expansion, µm/m-K 27
16

Otherwise Unclassified Properties

Base Metal Price, % relative 12
37
Density, g/cm3 1.7
8.0
Embodied Carbon, kg CO2/kg material 23
6.2
Embodied Energy, MJ/kg 160
89
Embodied Water, L/kg 990
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20
150
Resilience: Unit (Modulus of Resilience), kJ/m3 160
110
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 71
24
Strength to Weight: Axial, points 34
20
Strength to Weight: Bending, points 46
19
Thermal Shock Resistance, points 12
13

Alloy Composition

Aluminum (Al), % 4.4 to 5.5
0 to 0.025
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 0 to 0.010
0
Iron (Fe), % 0 to 0.0050
36.5 to 42.3
Magnesium (Mg), % 93.5 to 95.5
0
Manganese (Mn), % 0.1 to 0.6
0 to 1.0
Nickel (Ni), % 0 to 0.0020
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.3
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.010
0