MakeItFrom.com
Menu (ESC)

EN-MC21230 Magnesium vs. AISI 430 Stainless Steel

EN-MC21230 magnesium belongs to the magnesium alloys classification, while AISI 430 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21230 magnesium and the bottom bar is AISI 430 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 63
160
Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 10
24
Fatigue Strength, MPa 99
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
77
Shear Strength, MPa 130
320
Tensile Strength: Ultimate (UTS), MPa 220
500
Tensile Strength: Yield (Proof), MPa 140
260

Thermal Properties

Latent Heat of Fusion, J/g 350
280
Maximum Temperature: Mechanical, °C 120
870
Melting Completion (Liquidus), °C 600
1510
Melting Onset (Solidus), °C 520
1430
Specific Heat Capacity, J/kg-K 1000
480
Thermal Conductivity, W/m-K 72
25
Thermal Expansion, µm/m-K 27
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 63
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 12
8.5
Density, g/cm3 1.7
7.7
Embodied Carbon, kg CO2/kg material 23
2.1
Embodied Energy, MJ/kg 160
30
Embodied Water, L/kg 990
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
100
Resilience: Unit (Modulus of Resilience), kJ/m3 200
170
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 71
25
Strength to Weight: Axial, points 36
18
Strength to Weight: Bending, points 48
18
Thermal Diffusivity, mm2/s 43
6.7
Thermal Shock Resistance, points 13
18

Alloy Composition

Aluminum (Al), % 5.5 to 8.5
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.010
0
Iron (Fe), % 0 to 0.0050
79.1 to 84
Magnesium (Mg), % 90.5 to 94.4
0
Manganese (Mn), % 0.1 to 0.6
0 to 1.0
Nickel (Ni), % 0 to 0.0020
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.010
0