MakeItFrom.com
Menu (ESC)

EN-MC21230 Magnesium vs. EN 1.4432 Stainless Steel

EN-MC21230 magnesium belongs to the magnesium alloys classification, while EN 1.4432 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21230 magnesium and the bottom bar is EN 1.4432 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 63
190
Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 10
44
Fatigue Strength, MPa 99
220
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
78
Shear Strength, MPa 130
420
Tensile Strength: Ultimate (UTS), MPa 220
610
Tensile Strength: Yield (Proof), MPa 140
250

Thermal Properties

Latent Heat of Fusion, J/g 350
290
Maximum Temperature: Mechanical, °C 120
960
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 520
1400
Specific Heat Capacity, J/kg-K 1000
470
Thermal Conductivity, W/m-K 72
15
Thermal Expansion, µm/m-K 27
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 63
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
19
Density, g/cm3 1.7
7.9
Embodied Carbon, kg CO2/kg material 23
3.9
Embodied Energy, MJ/kg 160
54
Embodied Water, L/kg 990
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
220
Resilience: Unit (Modulus of Resilience), kJ/m3 200
150
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 71
25
Strength to Weight: Axial, points 36
21
Strength to Weight: Bending, points 48
20
Thermal Diffusivity, mm2/s 43
4.0
Thermal Shock Resistance, points 13
14

Alloy Composition

Aluminum (Al), % 5.5 to 8.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 0 to 0.010
0
Iron (Fe), % 0 to 0.0050
62.3 to 70.5
Magnesium (Mg), % 90.5 to 94.4
0
Manganese (Mn), % 0.1 to 0.6
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 0 to 0.0020
10.5 to 13
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.010
0