MakeItFrom.com
Menu (ESC)

EN-MC21320 Magnesium vs. 1060 Aluminum

EN-MC21320 magnesium belongs to the magnesium alloys classification, while 1060 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN-MC21320 magnesium and the bottom bar is 1060 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
68
Elongation at Break, % 7.5
1.1 to 30
Fatigue Strength, MPa 95
15 to 50
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
26
Shear Strength, MPa 130
42 to 75
Tensile Strength: Ultimate (UTS), MPa 230
67 to 130
Tensile Strength: Yield (Proof), MPa 140
17 to 110

Thermal Properties

Latent Heat of Fusion, J/g 370
400
Maximum Temperature: Mechanical, °C 110
170
Melting Completion (Liquidus), °C 600
660
Melting Onset (Solidus), °C 530
650
Specific Heat Capacity, J/kg-K 1000
900
Thermal Conductivity, W/m-K 66
230
Thermal Expansion, µm/m-K 26
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
62
Electrical Conductivity: Equal Weight (Specific), % IACS 91
210

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 1.6
2.7
Embodied Carbon, kg CO2/kg material 23
8.3
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 980
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
0.57 to 37
Resilience: Unit (Modulus of Resilience), kJ/m3 200
2.1 to 89
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 72
50
Strength to Weight: Axial, points 38
6.9 to 13
Strength to Weight: Bending, points 50
14 to 21
Thermal Diffusivity, mm2/s 40
96
Thermal Shock Resistance, points 13
3.0 to 5.6

Alloy Composition

Aluminum (Al), % 3.5 to 5.0
99.6 to 100
Copper (Cu), % 0 to 0.010
0 to 0.050
Iron (Fe), % 0 to 0.0050
0 to 0.35
Magnesium (Mg), % 92.5 to 95.9
0 to 0.030
Manganese (Mn), % 0.1 to 0.7
0 to 0.030
Nickel (Ni), % 0 to 0.0020
0
Silicon (Si), % 0.5 to 1.5
0 to 0.25
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.2
0 to 0.050
Residuals, % 0 to 0.010
0