MakeItFrom.com
Menu (ESC)

EN-MC21320 Magnesium vs. ACI-ASTM CK35MN Steel

EN-MC21320 magnesium belongs to the magnesium alloys classification, while ACI-ASTM CK35MN steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21320 magnesium and the bottom bar is ACI-ASTM CK35MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68
190
Elastic (Young's, Tensile) Modulus, GPa 45
210
Elongation at Break, % 7.5
40
Fatigue Strength, MPa 95
270
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
81
Tensile Strength: Ultimate (UTS), MPa 230
650
Tensile Strength: Yield (Proof), MPa 140
310

Thermal Properties

Latent Heat of Fusion, J/g 370
310
Maximum Temperature: Mechanical, °C 110
1100
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 530
1410
Specific Heat Capacity, J/kg-K 1000
470
Thermal Conductivity, W/m-K 66
12
Thermal Expansion, µm/m-K 26
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 91
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 12
31
Density, g/cm3 1.6
8.0
Embodied Carbon, kg CO2/kg material 23
5.9
Embodied Energy, MJ/kg 160
81
Embodied Water, L/kg 980
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
210
Resilience: Unit (Modulus of Resilience), kJ/m3 200
240
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 72
25
Strength to Weight: Axial, points 38
22
Strength to Weight: Bending, points 50
21
Thermal Diffusivity, mm2/s 40
3.3
Thermal Shock Resistance, points 13
14

Alloy Composition

Aluminum (Al), % 3.5 to 5.0
0
Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 0 to 0.010
0 to 0.4
Iron (Fe), % 0 to 0.0050
43.4 to 51.8
Magnesium (Mg), % 92.5 to 95.9
0
Manganese (Mn), % 0.1 to 0.7
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 6.8
Nickel (Ni), % 0 to 0.0020
20 to 22
Nitrogen (N), % 0
0.21 to 0.32
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.5 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.010
0