MakeItFrom.com
Menu (ESC)

EN-MC21320 Magnesium vs. EN 1.0601 Steel

EN-MC21320 magnesium belongs to the magnesium alloys classification, while EN 1.0601 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21320 magnesium and the bottom bar is EN 1.0601 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 68
210
Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 7.5
11
Fatigue Strength, MPa 95
220
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
72
Shear Strength, MPa 130
430
Tensile Strength: Ultimate (UTS), MPa 230
730
Tensile Strength: Yield (Proof), MPa 140
350

Thermal Properties

Latent Heat of Fusion, J/g 370
250
Maximum Temperature: Mechanical, °C 110
400
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 530
1410
Specific Heat Capacity, J/kg-K 1000
470
Thermal Conductivity, W/m-K 66
48
Thermal Expansion, µm/m-K 26
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 91
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
2.1
Density, g/cm3 1.6
7.8
Embodied Carbon, kg CO2/kg material 23
1.5
Embodied Energy, MJ/kg 160
19
Embodied Water, L/kg 980
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
65
Resilience: Unit (Modulus of Resilience), kJ/m3 200
330
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 72
24
Strength to Weight: Axial, points 38
26
Strength to Weight: Bending, points 50
23
Thermal Diffusivity, mm2/s 40
13
Thermal Shock Resistance, points 13
23

Alloy Composition

Aluminum (Al), % 3.5 to 5.0
0
Carbon (C), % 0
0.57 to 0.65
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 0 to 0.010
0
Iron (Fe), % 0 to 0.0050
97.1 to 98.8
Magnesium (Mg), % 92.5 to 95.9
0
Manganese (Mn), % 0.1 to 0.7
0.6 to 0.9
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.0020
0 to 0.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.5 to 1.5
0 to 0.4
Sulfur (S), % 0
0 to 0.045
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.010
0