MakeItFrom.com
Menu (ESC)

EN-MC21320 Magnesium vs. EN 1.4959 Stainless Steel

EN-MC21320 magnesium belongs to the magnesium alloys classification, while EN 1.4959 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21320 magnesium and the bottom bar is EN 1.4959 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 7.5
40
Fatigue Strength, MPa 95
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
77
Shear Strength, MPa 130
430
Tensile Strength: Ultimate (UTS), MPa 230
630
Tensile Strength: Yield (Proof), MPa 140
190

Thermal Properties

Latent Heat of Fusion, J/g 370
300
Maximum Temperature: Mechanical, °C 110
1090
Melting Completion (Liquidus), °C 600
1400
Melting Onset (Solidus), °C 530
1350
Specific Heat Capacity, J/kg-K 1000
480
Thermal Conductivity, W/m-K 66
12
Thermal Expansion, µm/m-K 26
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 17
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 91
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 12
31
Density, g/cm3 1.6
8.0
Embodied Carbon, kg CO2/kg material 23
5.4
Embodied Energy, MJ/kg 160
76
Embodied Water, L/kg 980
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
190
Resilience: Unit (Modulus of Resilience), kJ/m3 200
96
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 72
24
Strength to Weight: Axial, points 38
22
Strength to Weight: Bending, points 50
20
Thermal Diffusivity, mm2/s 40
3.2
Thermal Shock Resistance, points 13
15

Alloy Composition

Aluminum (Al), % 3.5 to 5.0
0.25 to 0.65
Carbon (C), % 0
0.050 to 0.1
Chromium (Cr), % 0
19 to 22
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0 to 0.010
0 to 0.5
Iron (Fe), % 0 to 0.0050
39.4 to 50.5
Magnesium (Mg), % 92.5 to 95.9
0
Manganese (Mn), % 0.1 to 0.7
0 to 1.5
Nickel (Ni), % 0 to 0.0020
30 to 34
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.5 to 1.5
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0.25 to 0.65
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.010
0