MakeItFrom.com
Menu (ESC)

EN-MC21320 Magnesium vs. C14180 Copper

EN-MC21320 magnesium belongs to the magnesium alloys classification, while C14180 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21320 magnesium and the bottom bar is C14180 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
120
Elongation at Break, % 7.5
15
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 18
43
Tensile Strength: Ultimate (UTS), MPa 230
210
Tensile Strength: Yield (Proof), MPa 140
130

Thermal Properties

Latent Heat of Fusion, J/g 370
210
Maximum Temperature: Mechanical, °C 110
200
Melting Completion (Liquidus), °C 600
1080
Melting Onset (Solidus), °C 530
1080
Specific Heat Capacity, J/kg-K 1000
390
Thermal Conductivity, W/m-K 66
370
Thermal Expansion, µm/m-K 26
17

Otherwise Unclassified Properties

Base Metal Price, % relative 12
31
Density, g/cm3 1.6
9.0
Embodied Carbon, kg CO2/kg material 23
2.6
Embodied Energy, MJ/kg 160
41
Embodied Water, L/kg 980
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
28
Resilience: Unit (Modulus of Resilience), kJ/m3 200
69
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 72
18
Strength to Weight: Axial, points 38
6.5
Strength to Weight: Bending, points 50
8.8
Thermal Diffusivity, mm2/s 40
110
Thermal Shock Resistance, points 13
7.4

Alloy Composition

Aluminum (Al), % 3.5 to 5.0
0 to 0.010
Copper (Cu), % 0 to 0.010
99.9 to 100
Iron (Fe), % 0 to 0.0050
0
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 92.5 to 95.9
0
Manganese (Mn), % 0.1 to 0.7
0
Nickel (Ni), % 0 to 0.0020
0
Phosphorus (P), % 0
0 to 0.075
Silicon (Si), % 0.5 to 1.5
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.010
0