MakeItFrom.com
Menu (ESC)

EN-MC21320 Magnesium vs. N06975 Nickel

EN-MC21320 magnesium belongs to the magnesium alloys classification, while N06975 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC21320 magnesium and the bottom bar is N06975 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 7.5
45
Fatigue Strength, MPa 95
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
80
Shear Strength, MPa 130
470
Tensile Strength: Ultimate (UTS), MPa 230
660
Tensile Strength: Yield (Proof), MPa 140
250

Thermal Properties

Latent Heat of Fusion, J/g 370
320
Maximum Temperature: Mechanical, °C 110
1000
Melting Completion (Liquidus), °C 600
1430
Melting Onset (Solidus), °C 530
1380
Specific Heat Capacity, J/kg-K 1000
460
Thermal Expansion, µm/m-K 26
13

Otherwise Unclassified Properties

Base Metal Price, % relative 12
50
Density, g/cm3 1.6
8.3
Embodied Carbon, kg CO2/kg material 23
8.9
Embodied Energy, MJ/kg 160
120
Embodied Water, L/kg 980
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15
240
Resilience: Unit (Modulus of Resilience), kJ/m3 200
150
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 72
24
Strength to Weight: Axial, points 38
22
Strength to Weight: Bending, points 50
20
Thermal Shock Resistance, points 13
18

Alloy Composition

Aluminum (Al), % 3.5 to 5.0
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 26
Copper (Cu), % 0 to 0.010
0.7 to 1.2
Iron (Fe), % 0 to 0.0050
10.2 to 23.6
Magnesium (Mg), % 92.5 to 95.9
0
Manganese (Mn), % 0.1 to 0.7
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 7.0
Nickel (Ni), % 0 to 0.0020
47 to 52
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0.5 to 1.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.7 to 1.5
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.010
0