MakeItFrom.com
Menu (ESC)

EN-MC32110 Magnesium vs. ACI-ASTM CE3MN Steel

EN-MC32110 magnesium belongs to the magnesium alloys classification, while ACI-ASTM CE3MN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC32110 magnesium and the bottom bar is ACI-ASTM CE3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 49
210
Elongation at Break, % 2.2
20
Fatigue Strength, MPa 80
380
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 19
81
Tensile Strength: Ultimate (UTS), MPa 220
770
Tensile Strength: Yield (Proof), MPa 140
590

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 99
1100
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 500
1410
Specific Heat Capacity, J/kg-K 950
470
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
21
Density, g/cm3 2.1
7.8
Embodied Carbon, kg CO2/kg material 22
4.2
Embodied Energy, MJ/kg 150
58
Embodied Water, L/kg 920
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3
140
Resilience: Unit (Modulus of Resilience), kJ/m3 210
840
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 58
25
Strength to Weight: Axial, points 29
27
Strength to Weight: Bending, points 38
24
Thermal Diffusivity, mm2/s 58
4.1
Thermal Shock Resistance, points 12
21

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 2.4 to 3.0
0
Iron (Fe), % 0 to 0.050
58.1 to 65.9
Magnesium (Mg), % 89.3 to 91.9
0
Manganese (Mn), % 0.25 to 0.75
0 to 1.5
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.010
6.0 to 8.0
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Zinc (Zn), % 5.5 to 6.5
0
Residuals, % 0 to 0.010
0