MakeItFrom.com
Menu (ESC)

EN-MC32110 Magnesium vs. AISI 316Cb Stainless Steel

EN-MC32110 magnesium belongs to the magnesium alloys classification, while AISI 316Cb stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC32110 magnesium and the bottom bar is AISI 316Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60
190
Elastic (Young's, Tensile) Modulus, GPa 49
200
Elongation at Break, % 2.2
34
Fatigue Strength, MPa 80
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 19
78
Shear Strength, MPa 120
390
Tensile Strength: Ultimate (UTS), MPa 220
580
Tensile Strength: Yield (Proof), MPa 140
230

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 99
940
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 500
1410
Specific Heat Capacity, J/kg-K 950
470
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 26
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
22
Density, g/cm3 2.1
7.9
Embodied Carbon, kg CO2/kg material 22
4.4
Embodied Energy, MJ/kg 150
61
Embodied Water, L/kg 920
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3
160
Resilience: Unit (Modulus of Resilience), kJ/m3 210
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 58
25
Strength to Weight: Axial, points 29
20
Strength to Weight: Bending, points 38
20
Thermal Diffusivity, mm2/s 58
4.1
Thermal Shock Resistance, points 12
13

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 2.4 to 3.0
0
Iron (Fe), % 0 to 0.050
60.9 to 72
Magnesium (Mg), % 89.3 to 91.9
0
Manganese (Mn), % 0.25 to 0.75
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.010
10 to 14
Niobium (Nb), % 0
0 to 1.1
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.2
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 5.5 to 6.5
0
Residuals, % 0 to 0.010
0