MakeItFrom.com
Menu (ESC)

EN-MC32110 Magnesium vs. EN 1.4520 Stainless Steel

EN-MC32110 magnesium belongs to the magnesium alloys classification, while EN 1.4520 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC32110 magnesium and the bottom bar is EN 1.4520 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60
180
Elastic (Young's, Tensile) Modulus, GPa 49
200
Elongation at Break, % 2.2
26
Fatigue Strength, MPa 80
160
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 19
77
Shear Strength, MPa 120
310
Tensile Strength: Ultimate (UTS), MPa 220
480
Tensile Strength: Yield (Proof), MPa 140
220

Thermal Properties

Latent Heat of Fusion, J/g 330
280
Maximum Temperature: Mechanical, °C 99
870
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 500
1400
Specific Heat Capacity, J/kg-K 950
480
Thermal Conductivity, W/m-K 120
20
Thermal Expansion, µm/m-K 26
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 13
8.5
Density, g/cm3 2.1
7.7
Embodied Carbon, kg CO2/kg material 22
2.2
Embodied Energy, MJ/kg 150
32
Embodied Water, L/kg 920
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3
100
Resilience: Unit (Modulus of Resilience), kJ/m3 210
120
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 58
25
Strength to Weight: Axial, points 29
17
Strength to Weight: Bending, points 38
18
Thermal Diffusivity, mm2/s 58
5.4
Thermal Shock Resistance, points 12
17

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 2.4 to 3.0
0
Iron (Fe), % 0 to 0.050
80.1 to 83.9
Magnesium (Mg), % 89.3 to 91.9
0
Manganese (Mn), % 0.25 to 0.75
0 to 0.5
Nickel (Ni), % 0 to 0.010
0
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.8
Zinc (Zn), % 5.5 to 6.5
0
Residuals, % 0 to 0.010
0