MakeItFrom.com
Menu (ESC)

EN-MC32110 Magnesium vs. EN 1.4857 Stainless Steel

EN-MC32110 magnesium belongs to the magnesium alloys classification, while EN 1.4857 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC32110 magnesium and the bottom bar is EN 1.4857 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60
150
Elastic (Young's, Tensile) Modulus, GPa 49
200
Elongation at Break, % 2.2
6.7
Fatigue Strength, MPa 80
120
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 19
78
Tensile Strength: Ultimate (UTS), MPa 220
500
Tensile Strength: Yield (Proof), MPa 140
250

Thermal Properties

Latent Heat of Fusion, J/g 330
330
Maximum Temperature: Mechanical, °C 99
1100
Melting Completion (Liquidus), °C 600
1370
Melting Onset (Solidus), °C 500
1320
Specific Heat Capacity, J/kg-K 950
480
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 26
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 13
34
Density, g/cm3 2.1
7.9
Embodied Carbon, kg CO2/kg material 22
5.7
Embodied Energy, MJ/kg 150
81
Embodied Water, L/kg 920
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3
28
Resilience: Unit (Modulus of Resilience), kJ/m3 210
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 58
25
Strength to Weight: Axial, points 29
18
Strength to Weight: Bending, points 38
18
Thermal Diffusivity, mm2/s 58
3.4
Thermal Shock Resistance, points 12
11

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
24 to 27
Copper (Cu), % 2.4 to 3.0
0
Iron (Fe), % 0 to 0.050
31.4 to 41.7
Magnesium (Mg), % 89.3 to 91.9
0
Manganese (Mn), % 0.25 to 0.75
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.010
33 to 36
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 5.5 to 6.5
0
Residuals, % 0 to 0.010
0