MakeItFrom.com
Menu (ESC)

EN-MC32110 Magnesium vs. N08366 Stainless Steel

EN-MC32110 magnesium belongs to the magnesium alloys classification, while N08366 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC32110 magnesium and the bottom bar is N08366 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60
180
Elastic (Young's, Tensile) Modulus, GPa 49
210
Elongation at Break, % 2.2
34
Fatigue Strength, MPa 80
190
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 19
80
Shear Strength, MPa 120
390
Tensile Strength: Ultimate (UTS), MPa 220
590
Tensile Strength: Yield (Proof), MPa 140
240

Thermal Properties

Latent Heat of Fusion, J/g 330
310
Maximum Temperature: Mechanical, °C 99
1100
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 500
1410
Specific Heat Capacity, J/kg-K 950
460
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 26
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 13
33
Density, g/cm3 2.1
8.1
Embodied Carbon, kg CO2/kg material 22
6.2
Embodied Energy, MJ/kg 150
84
Embodied Water, L/kg 920
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3
160
Resilience: Unit (Modulus of Resilience), kJ/m3 210
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 58
24
Strength to Weight: Axial, points 29
20
Strength to Weight: Bending, points 38
19
Thermal Diffusivity, mm2/s 58
3.4
Thermal Shock Resistance, points 12
13

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 2.4 to 3.0
0
Iron (Fe), % 0 to 0.050
42.4 to 50.5
Magnesium (Mg), % 89.3 to 91.9
0
Manganese (Mn), % 0.25 to 0.75
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0 to 0.010
23.5 to 25.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 5.5 to 6.5
0
Residuals, % 0 to 0.010
0