MakeItFrom.com
Menu (ESC)

EN-MC32110 Magnesium vs. N08925 Stainless Steel

EN-MC32110 magnesium belongs to the magnesium alloys classification, while N08925 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC32110 magnesium and the bottom bar is N08925 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 49
200
Elongation at Break, % 2.2
45
Fatigue Strength, MPa 80
310
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 19
80
Shear Strength, MPa 120
470
Tensile Strength: Ultimate (UTS), MPa 220
680
Tensile Strength: Yield (Proof), MPa 140
340

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 99
1100
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 500
1410
Specific Heat Capacity, J/kg-K 950
460
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 26
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 13
33
Density, g/cm3 2.1
8.1
Embodied Carbon, kg CO2/kg material 22
6.2
Embodied Energy, MJ/kg 150
84
Embodied Water, L/kg 920
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3
250
Resilience: Unit (Modulus of Resilience), kJ/m3 210
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 58
24
Strength to Weight: Axial, points 29
23
Strength to Weight: Bending, points 38
21
Thermal Diffusivity, mm2/s 58
3.5
Thermal Shock Resistance, points 12
15

Alloy Composition

Aluminum (Al), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 2.4 to 3.0
0.8 to 1.5
Iron (Fe), % 0 to 0.050
42.7 to 50.1
Magnesium (Mg), % 89.3 to 91.9
0
Manganese (Mn), % 0.25 to 0.75
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0 to 0.010
24 to 26
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 5.5 to 6.5
0
Residuals, % 0 to 0.010
0