MakeItFrom.com
Menu (ESC)

EN-MC32110 Magnesium vs. N09777 Nickel

EN-MC32110 magnesium belongs to the magnesium alloys classification, while N09777 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC32110 magnesium and the bottom bar is N09777 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 49
200
Elongation at Break, % 2.2
39
Fatigue Strength, MPa 80
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 19
77
Shear Strength, MPa 120
400
Tensile Strength: Ultimate (UTS), MPa 220
580
Tensile Strength: Yield (Proof), MPa 140
240

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 99
960
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 500
1390
Specific Heat Capacity, J/kg-K 950
460
Thermal Expansion, µm/m-K 26
13

Otherwise Unclassified Properties

Base Metal Price, % relative 13
38
Density, g/cm3 2.1
8.1
Embodied Carbon, kg CO2/kg material 22
7.4
Embodied Energy, MJ/kg 150
100
Embodied Water, L/kg 920
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3
180
Resilience: Unit (Modulus of Resilience), kJ/m3 210
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 58
24
Strength to Weight: Axial, points 29
20
Strength to Weight: Bending, points 38
19
Thermal Shock Resistance, points 12
16

Alloy Composition

Aluminum (Al), % 0 to 0.2
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
14 to 19
Copper (Cu), % 2.4 to 3.0
0
Iron (Fe), % 0 to 0.050
28.5 to 47.5
Magnesium (Mg), % 89.3 to 91.9
0
Manganese (Mn), % 0.25 to 0.75
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 5.5
Nickel (Ni), % 0 to 0.010
34 to 42
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
2.0 to 3.0
Zinc (Zn), % 5.5 to 6.5
0
Residuals, % 0 to 0.010
0