MakeItFrom.com
Menu (ESC)

EN-MC35110 Magnesium vs. ACI-ASTM CF8M Steel

EN-MC35110 magnesium belongs to the magnesium alloys classification, while ACI-ASTM CF8M steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC35110 magnesium and the bottom bar is ACI-ASTM CF8M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 63
170
Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 3.1
50
Fatigue Strength, MPa 110
280
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
78
Tensile Strength: Ultimate (UTS), MPa 230
540
Tensile Strength: Yield (Proof), MPa 150
290

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 140
1000
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 520
1400
Specific Heat Capacity, J/kg-K 970
480
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 26
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 18
19
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 24
3.8
Embodied Energy, MJ/kg 170
53
Embodied Water, L/kg 940
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3
230
Resilience: Unit (Modulus of Resilience), kJ/m3 260
210
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
25
Strength to Weight: Axial, points 34
19
Strength to Weight: Bending, points 44
19
Thermal Diffusivity, mm2/s 61
4.3
Thermal Shock Resistance, points 14
12

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
60.3 to 71
Magnesium (Mg), % 92 to 95.4
0
Manganese (Mn), % 0 to 0.15
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.0050
9.0 to 12
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Unspecified Rare Earths, % 0.75 to 1.8
0
Zinc (Zn), % 3.5 to 5.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0