MakeItFrom.com
Menu (ESC)

EN-MC35110 Magnesium vs. EN 1.0426 Steel

EN-MC35110 magnesium belongs to the magnesium alloys classification, while EN 1.0426 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC35110 magnesium and the bottom bar is EN 1.0426 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 63
150
Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 3.1
25
Fatigue Strength, MPa 110
210
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
73
Shear Strength, MPa 130
330
Tensile Strength: Ultimate (UTS), MPa 230
520
Tensile Strength: Yield (Proof), MPa 150
290

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 140
400
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 520
1420
Specific Heat Capacity, J/kg-K 970
470
Thermal Conductivity, W/m-K 110
51
Thermal Expansion, µm/m-K 26
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 18
1.9
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 24
1.4
Embodied Energy, MJ/kg 170
19
Embodied Water, L/kg 940
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3
110
Resilience: Unit (Modulus of Resilience), kJ/m3 260
230
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 63
24
Strength to Weight: Axial, points 34
18
Strength to Weight: Bending, points 44
18
Thermal Diffusivity, mm2/s 61
14
Thermal Shock Resistance, points 14
16

Alloy Composition

Carbon (C), % 0
0.080 to 0.2
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
97.9 to 99.02
Magnesium (Mg), % 92 to 95.4
0
Manganese (Mn), % 0 to 0.15
0.9 to 1.5
Nickel (Ni), % 0 to 0.0050
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.010
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Unspecified Rare Earths, % 0.75 to 1.8
0
Zinc (Zn), % 3.5 to 5.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0