MakeItFrom.com
Menu (ESC)

EN-MC35110 Magnesium vs. EN 1.0456 Steel

EN-MC35110 magnesium belongs to the magnesium alloys classification, while EN 1.0456 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC35110 magnesium and the bottom bar is EN 1.0456 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 63
120 to 130
Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 3.1
24 to 26
Fatigue Strength, MPa 110
210 to 220
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
73
Shear Strength, MPa 130
270 to 280
Tensile Strength: Ultimate (UTS), MPa 230
420 to 450
Tensile Strength: Yield (Proof), MPa 150
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 140
400
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 520
1420
Specific Heat Capacity, J/kg-K 970
470
Thermal Conductivity, W/m-K 110
48
Thermal Expansion, µm/m-K 26
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 18
2.2
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 24
1.5
Embodied Energy, MJ/kg 170
20
Embodied Water, L/kg 940
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3
93 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 260
220 to 230
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 63
24
Strength to Weight: Axial, points 34
15 to 16
Strength to Weight: Bending, points 44
16 to 17
Thermal Diffusivity, mm2/s 61
13
Thermal Shock Resistance, points 14
13 to 14

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.030
0 to 0.35
Iron (Fe), % 0 to 0.010
96.7 to 99.48
Magnesium (Mg), % 92 to 95.4
0
Manganese (Mn), % 0 to 0.15
0.5 to 1.4
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.0050
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.010
0 to 0.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.030
Unspecified Rare Earths, % 0.75 to 1.8
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 3.5 to 5.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0