MakeItFrom.com
Menu (ESC)

EN-MC35110 Magnesium vs. EN 1.4415 Stainless Steel

EN-MC35110 magnesium belongs to the magnesium alloys classification, while EN 1.4415 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC35110 magnesium and the bottom bar is EN 1.4415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 3.1
17 to 20
Fatigue Strength, MPa 110
470 to 510
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
77
Shear Strength, MPa 130
520 to 570
Tensile Strength: Ultimate (UTS), MPa 230
830 to 930
Tensile Strength: Yield (Proof), MPa 150
730 to 840

Thermal Properties

Latent Heat of Fusion, J/g 330
280
Maximum Temperature: Mechanical, °C 140
790
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 520
1420
Specific Heat Capacity, J/kg-K 970
470
Thermal Conductivity, W/m-K 110
19
Thermal Expansion, µm/m-K 26
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 18
13
Density, g/cm3 1.9
7.9
Embodied Carbon, kg CO2/kg material 24
3.6
Embodied Energy, MJ/kg 170
51
Embodied Water, L/kg 940
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 260
1350 to 1790
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
25
Strength to Weight: Axial, points 34
29 to 33
Strength to Weight: Bending, points 44
25 to 27
Thermal Diffusivity, mm2/s 61
5.1
Thermal Shock Resistance, points 14
30 to 34

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
75.9 to 82.4
Magnesium (Mg), % 92 to 95.4
0
Manganese (Mn), % 0 to 0.15
0 to 0.5
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 0 to 0.0050
4.5 to 6.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.010
Unspecified Rare Earths, % 0.75 to 1.8
0
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 3.5 to 5.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0