EN-MC35110 Magnesium vs. Titanium 6-6-2
EN-MC35110 magnesium belongs to the magnesium alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.
For each property being compared, the top bar is EN-MC35110 magnesium and the bottom bar is titanium 6-6-2.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 45 | |
120 |
Elongation at Break, % | 3.1 | |
6.7 to 9.0 |
Fatigue Strength, MPa | 110 | |
590 to 670 |
Poisson's Ratio | 0.29 | |
0.32 |
Shear Modulus, GPa | 18 | |
44 |
Shear Strength, MPa | 130 | |
670 to 800 |
Tensile Strength: Ultimate (UTS), MPa | 230 | |
1140 to 1370 |
Tensile Strength: Yield (Proof), MPa | 150 | |
1040 to 1230 |
Thermal Properties
Latent Heat of Fusion, J/g | 330 | |
400 |
Maximum Temperature: Mechanical, °C | 140 | |
310 |
Melting Completion (Liquidus), °C | 600 | |
1610 |
Melting Onset (Solidus), °C | 520 | |
1560 |
Specific Heat Capacity, J/kg-K | 970 | |
540 |
Thermal Conductivity, W/m-K | 110 | |
5.5 |
Thermal Expansion, µm/m-K | 26 | |
9.4 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 27 | |
1.1 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 130 | |
2.1 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 18 | |
40 |
Density, g/cm3 | 1.9 | |
4.8 |
Embodied Carbon, kg CO2/kg material | 24 | |
29 |
Embodied Energy, MJ/kg | 170 | |
470 |
Embodied Water, L/kg | 940 | |
200 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 6.3 | |
89 to 99 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 63 | |
34 |
Strength to Weight: Axial, points | 34 | |
66 to 79 |
Strength to Weight: Bending, points | 44 | |
50 to 57 |
Thermal Diffusivity, mm2/s | 61 | |
2.1 |
Thermal Shock Resistance, points | 14 | |
75 to 90 |
Alloy Composition
Aluminum (Al), % | 0 | |
5.0 to 6.0 |
Carbon (C), % | 0 | |
0 to 0.050 |
Copper (Cu), % | 0 to 0.030 | |
0.35 to 1.0 |
Hydrogen (H), % | 0 | |
0 to 0.015 |
Iron (Fe), % | 0 to 0.010 | |
0.35 to 1.0 |
Magnesium (Mg), % | 92 to 95.4 | |
0 |
Manganese (Mn), % | 0 to 0.15 | |
0 |
Molybdenum (Mo), % | 0 | |
5.0 to 6.0 |
Nickel (Ni), % | 0 to 0.0050 | |
0 |
Nitrogen (N), % | 0 | |
0 to 0.040 |
Oxygen (O), % | 0 | |
0 to 0.2 |
Silicon (Si), % | 0 to 0.010 | |
0 |
Tin (Sn), % | 0 | |
1.5 to 2.5 |
Titanium (Ti), % | 0 | |
82.8 to 87.8 |
Unspecified Rare Earths, % | 0.75 to 1.8 | |
0 |
Zinc (Zn), % | 3.5 to 5.0 | |
0 |
Zirconium (Zr), % | 0.4 to 1.0 | |
0 |
Residuals, % | 0 | |
0 to 0.4 |