MakeItFrom.com
Menu (ESC)

EN-MC35110 Magnesium vs. S21800 Stainless Steel

EN-MC35110 magnesium belongs to the magnesium alloys classification, while S21800 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC35110 magnesium and the bottom bar is S21800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 63
210
Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 3.1
40
Fatigue Strength, MPa 110
330
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
75
Shear Strength, MPa 130
510
Tensile Strength: Ultimate (UTS), MPa 230
740
Tensile Strength: Yield (Proof), MPa 150
390

Thermal Properties

Latent Heat of Fusion, J/g 330
340
Maximum Temperature: Mechanical, °C 140
900
Melting Completion (Liquidus), °C 600
1360
Melting Onset (Solidus), °C 520
1310
Specific Heat Capacity, J/kg-K 970
500
Thermal Expansion, µm/m-K 26
16

Otherwise Unclassified Properties

Base Metal Price, % relative 18
15
Density, g/cm3 1.9
7.5
Embodied Carbon, kg CO2/kg material 24
3.1
Embodied Energy, MJ/kg 170
45
Embodied Water, L/kg 940
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3
250
Resilience: Unit (Modulus of Resilience), kJ/m3 260
390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
26
Strength to Weight: Axial, points 34
27
Strength to Weight: Bending, points 44
24
Thermal Shock Resistance, points 14
17

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
59.1 to 65.4
Magnesium (Mg), % 92 to 95.4
0
Manganese (Mn), % 0 to 0.15
7.0 to 9.0
Nickel (Ni), % 0 to 0.0050
8.0 to 9.0
Nitrogen (N), % 0
0.080 to 0.18
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.010
3.5 to 4.5
Sulfur (S), % 0
0 to 0.030
Unspecified Rare Earths, % 0.75 to 1.8
0
Zinc (Zn), % 3.5 to 5.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0