MakeItFrom.com
Menu (ESC)

EN-MC35110 Magnesium vs. S35315 Stainless Steel

EN-MC35110 magnesium belongs to the magnesium alloys classification, while S35315 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC35110 magnesium and the bottom bar is S35315 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 63
190
Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 3.1
46
Fatigue Strength, MPa 110
280
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
78
Shear Strength, MPa 130
520
Tensile Strength: Ultimate (UTS), MPa 230
740
Tensile Strength: Yield (Proof), MPa 150
300

Thermal Properties

Latent Heat of Fusion, J/g 330
330
Maximum Temperature: Mechanical, °C 140
1100
Melting Completion (Liquidus), °C 600
1370
Melting Onset (Solidus), °C 520
1330
Specific Heat Capacity, J/kg-K 970
480
Thermal Conductivity, W/m-K 110
12
Thermal Expansion, µm/m-K 26
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 18
34
Density, g/cm3 1.9
7.9
Embodied Carbon, kg CO2/kg material 24
5.7
Embodied Energy, MJ/kg 170
81
Embodied Water, L/kg 940
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3
270
Resilience: Unit (Modulus of Resilience), kJ/m3 260
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
25
Strength to Weight: Axial, points 34
26
Strength to Weight: Bending, points 44
23
Thermal Diffusivity, mm2/s 61
3.1
Thermal Shock Resistance, points 14
17

Alloy Composition

Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.030 to 0.1
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
33.6 to 40.6
Magnesium (Mg), % 92 to 95.4
0
Manganese (Mn), % 0 to 0.15
0 to 2.0
Nickel (Ni), % 0 to 0.0050
34 to 36
Nitrogen (N), % 0
0.12 to 0.18
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.010
1.2 to 2.0
Sulfur (S), % 0
0 to 0.030
Unspecified Rare Earths, % 0.75 to 1.8
0
Zinc (Zn), % 3.5 to 5.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0