MakeItFrom.com
Menu (ESC)

EN-MC35110 Magnesium vs. S82121 Stainless Steel

EN-MC35110 magnesium belongs to the magnesium alloys classification, while S82121 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC35110 magnesium and the bottom bar is S82121 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 63
250
Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 3.1
28
Fatigue Strength, MPa 110
370
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 18
78
Shear Strength, MPa 130
470
Tensile Strength: Ultimate (UTS), MPa 230
730
Tensile Strength: Yield (Proof), MPa 150
510

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 140
1020
Melting Completion (Liquidus), °C 600
1430
Melting Onset (Solidus), °C 520
1380
Specific Heat Capacity, J/kg-K 970
480
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 18
14
Density, g/cm3 1.9
7.7
Embodied Carbon, kg CO2/kg material 24
2.8
Embodied Energy, MJ/kg 170
40
Embodied Water, L/kg 940
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3
180
Resilience: Unit (Modulus of Resilience), kJ/m3 260
660
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
25
Strength to Weight: Axial, points 34
26
Strength to Weight: Bending, points 44
23
Thermal Diffusivity, mm2/s 61
4.0
Thermal Shock Resistance, points 14
20

Alloy Composition

Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0
21 to 23
Copper (Cu), % 0 to 0.030
0.2 to 1.2
Iron (Fe), % 0 to 0.010
66.7 to 75.4
Magnesium (Mg), % 92 to 95.4
0
Manganese (Mn), % 0 to 0.15
1.0 to 2.5
Molybdenum (Mo), % 0
0.3 to 1.3
Nickel (Ni), % 0 to 0.0050
2.0 to 4.0
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Unspecified Rare Earths, % 0.75 to 1.8
0
Zinc (Zn), % 3.5 to 5.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0