MakeItFrom.com
Menu (ESC)

EN-MC65120 Magnesium vs. EN 1.4832 Stainless Steel

EN-MC65120 magnesium belongs to the magnesium alloys classification, while EN 1.4832 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65120 magnesium and the bottom bar is EN 1.4832 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
150
Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 3.1
11
Fatigue Strength, MPa 80
140
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
77
Tensile Strength: Ultimate (UTS), MPa 160
510
Tensile Strength: Yield (Proof), MPa 110
260

Thermal Properties

Latent Heat of Fusion, J/g 330
310
Maximum Temperature: Mechanical, °C 180
950
Melting Completion (Liquidus), °C 590
1400
Melting Onset (Solidus), °C 520
1360
Specific Heat Capacity, J/kg-K 970
480
Thermal Conductivity, W/m-K 100
14
Thermal Expansion, µm/m-K 26
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 25
19
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 25
3.6
Embodied Energy, MJ/kg 190
51
Embodied Water, L/kg 930
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4
48
Resilience: Unit (Modulus of Resilience), kJ/m3 140
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
25
Strength to Weight: Axial, points 23
18
Strength to Weight: Bending, points 34
18
Thermal Diffusivity, mm2/s 56
3.7
Thermal Shock Resistance, points 9.8
12

Alloy Composition

Carbon (C), % 0
0.15 to 0.35
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
58.6 to 67.4
Magnesium (Mg), % 91.8 to 95.1
0
Manganese (Mn), % 0 to 0.15
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.0050
13 to 15
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.010
0.5 to 2.5
Sulfur (S), % 0
0 to 0.030
Unspecified Rare Earths, % 2.5 to 4.0
0
Zinc (Zn), % 2.0 to 3.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0