MakeItFrom.com
Menu (ESC)

EN-MC65120 Magnesium vs. C12900 Copper

EN-MC65120 magnesium belongs to the magnesium alloys classification, while C12900 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65120 magnesium and the bottom bar is C12900 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
120
Elongation at Break, % 3.1
2.8 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 17
43
Shear Strength, MPa 92
150 to 210
Tensile Strength: Ultimate (UTS), MPa 160
220 to 420
Tensile Strength: Yield (Proof), MPa 110
75 to 380

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 180
200
Melting Completion (Liquidus), °C 590
1080
Melting Onset (Solidus), °C 520
1030
Specific Heat Capacity, J/kg-K 970
390
Thermal Conductivity, W/m-K 100
380
Thermal Expansion, µm/m-K 26
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
98
Electrical Conductivity: Equal Weight (Specific), % IACS 120
98

Otherwise Unclassified Properties

Base Metal Price, % relative 25
32
Density, g/cm3 1.9
9.0
Embodied Carbon, kg CO2/kg material 25
2.6
Embodied Energy, MJ/kg 190
41
Embodied Water, L/kg 930
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4
11 to 88
Resilience: Unit (Modulus of Resilience), kJ/m3 140
24 to 640
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 62
18
Strength to Weight: Axial, points 23
6.8 to 13
Strength to Weight: Bending, points 34
9.1 to 14
Thermal Diffusivity, mm2/s 56
110
Thermal Shock Resistance, points 9.8
7.8 to 15

Alloy Composition

Antimony (Sb), % 0
0 to 0.0030
Arsenic (As), % 0
0 to 0.012
Bismuth (Bi), % 0
0 to 0.0030
Copper (Cu), % 0 to 0.030
99.88 to 100
Iron (Fe), % 0 to 0.010
0
Lead (Pb), % 0
0 to 0.0040
Magnesium (Mg), % 91.8 to 95.1
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.0050
0 to 0.050
Silicon (Si), % 0 to 0.010
0
Silver (Ag), % 0
0 to 0.054
Tellurium (Te), % 0
0 to 0.025
Unspecified Rare Earths, % 2.5 to 4.0
0
Zinc (Zn), % 2.0 to 3.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0