MakeItFrom.com
Menu (ESC)

EN-MC65120 Magnesium vs. C92200 Bronze

EN-MC65120 magnesium belongs to the magnesium alloys classification, while C92200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65120 magnesium and the bottom bar is C92200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
110
Elongation at Break, % 3.1
25
Fatigue Strength, MPa 80
76
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 17
41
Tensile Strength: Ultimate (UTS), MPa 160
280
Tensile Strength: Yield (Proof), MPa 110
140

Thermal Properties

Latent Heat of Fusion, J/g 330
190
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 590
990
Melting Onset (Solidus), °C 520
830
Specific Heat Capacity, J/kg-K 970
370
Thermal Conductivity, W/m-K 100
70
Thermal Expansion, µm/m-K 26
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
14
Electrical Conductivity: Equal Weight (Specific), % IACS 120
14

Otherwise Unclassified Properties

Base Metal Price, % relative 25
32
Density, g/cm3 1.9
8.7
Embodied Carbon, kg CO2/kg material 25
3.2
Embodied Energy, MJ/kg 190
52
Embodied Water, L/kg 930
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4
58
Resilience: Unit (Modulus of Resilience), kJ/m3 140
87
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 62
18
Strength to Weight: Axial, points 23
8.9
Strength to Weight: Bending, points 34
11
Thermal Diffusivity, mm2/s 56
21
Thermal Shock Resistance, points 9.8
9.9

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 0 to 0.030
86 to 90
Iron (Fe), % 0 to 0.010
0 to 0.25
Lead (Pb), % 0
1.0 to 2.0
Magnesium (Mg), % 91.8 to 95.1
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.0050
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.010
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
5.5 to 6.5
Unspecified Rare Earths, % 2.5 to 4.0
0
Zinc (Zn), % 2.0 to 3.0
3.0 to 5.0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0
0 to 0.7