MakeItFrom.com
Menu (ESC)

EN-MC65120 Magnesium vs. N08320 Stainless Steel

EN-MC65120 magnesium belongs to the magnesium alloys classification, while N08320 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65120 magnesium and the bottom bar is N08320 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
190
Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 3.1
40
Fatigue Strength, MPa 80
190
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
78
Shear Strength, MPa 92
400
Tensile Strength: Ultimate (UTS), MPa 160
580
Tensile Strength: Yield (Proof), MPa 110
220

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 590
1400
Melting Onset (Solidus), °C 520
1350
Specific Heat Capacity, J/kg-K 970
480
Thermal Conductivity, W/m-K 100
12
Thermal Expansion, µm/m-K 26
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 25
28
Density, g/cm3 1.9
8.0
Embodied Carbon, kg CO2/kg material 25
4.9
Embodied Energy, MJ/kg 190
69
Embodied Water, L/kg 930
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4
180
Resilience: Unit (Modulus of Resilience), kJ/m3 140
120
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
24
Strength to Weight: Axial, points 23
20
Strength to Weight: Bending, points 34
20
Thermal Diffusivity, mm2/s 56
3.3
Thermal Shock Resistance, points 9.8
13

Alloy Composition

Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
21 to 23
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
40.4 to 50
Magnesium (Mg), % 91.8 to 95.1
0
Manganese (Mn), % 0 to 0.15
0 to 2.5
Nickel (Ni), % 0 to 0.0050
25 to 27
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Unspecified Rare Earths, % 2.5 to 4.0
0
Zinc (Zn), % 2.0 to 3.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0