MakeItFrom.com
Menu (ESC)

EN-MC65120 Magnesium vs. S21800 Stainless Steel

EN-MC65120 magnesium belongs to the magnesium alloys classification, while S21800 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65120 magnesium and the bottom bar is S21800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
210
Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 3.1
40
Fatigue Strength, MPa 80
330
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
75
Shear Strength, MPa 92
510
Tensile Strength: Ultimate (UTS), MPa 160
740
Tensile Strength: Yield (Proof), MPa 110
390

Thermal Properties

Latent Heat of Fusion, J/g 330
340
Maximum Temperature: Mechanical, °C 180
900
Melting Completion (Liquidus), °C 590
1360
Melting Onset (Solidus), °C 520
1310
Specific Heat Capacity, J/kg-K 970
500
Thermal Expansion, µm/m-K 26
16

Otherwise Unclassified Properties

Base Metal Price, % relative 25
15
Density, g/cm3 1.9
7.5
Embodied Carbon, kg CO2/kg material 25
3.1
Embodied Energy, MJ/kg 190
45
Embodied Water, L/kg 930
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4
250
Resilience: Unit (Modulus of Resilience), kJ/m3 140
390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
26
Strength to Weight: Axial, points 23
27
Strength to Weight: Bending, points 34
24
Thermal Shock Resistance, points 9.8
17

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
59.1 to 65.4
Magnesium (Mg), % 91.8 to 95.1
0
Manganese (Mn), % 0 to 0.15
7.0 to 9.0
Nickel (Ni), % 0 to 0.0050
8.0 to 9.0
Nitrogen (N), % 0
0.080 to 0.18
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0 to 0.010
3.5 to 4.5
Sulfur (S), % 0
0 to 0.030
Unspecified Rare Earths, % 2.5 to 4.0
0
Zinc (Zn), % 2.0 to 3.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0