MakeItFrom.com
Menu (ESC)

EN-MC65120 Magnesium vs. S44735 Stainless Steel

EN-MC65120 magnesium belongs to the magnesium alloys classification, while S44735 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65120 magnesium and the bottom bar is S44735 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
220
Elastic (Young's, Tensile) Modulus, GPa 45
210
Elongation at Break, % 3.1
21
Fatigue Strength, MPa 80
300
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 17
82
Shear Strength, MPa 92
390
Tensile Strength: Ultimate (UTS), MPa 160
630
Tensile Strength: Yield (Proof), MPa 110
460

Thermal Properties

Latent Heat of Fusion, J/g 330
310
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 520
1420
Specific Heat Capacity, J/kg-K 970
480
Thermal Expansion, µm/m-K 26
11

Otherwise Unclassified Properties

Base Metal Price, % relative 25
21
Density, g/cm3 1.9
7.7
Embodied Carbon, kg CO2/kg material 25
4.4
Embodied Energy, MJ/kg 190
61
Embodied Water, L/kg 930
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140
520
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 62
26
Strength to Weight: Axial, points 23
23
Strength to Weight: Bending, points 34
21
Thermal Shock Resistance, points 9.8
20

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
60.7 to 68.4
Magnesium (Mg), % 91.8 to 95.1
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Molybdenum (Mo), % 0
3.6 to 4.2
Nickel (Ni), % 0 to 0.0050
0 to 1.0
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.0
Unspecified Rare Earths, % 2.5 to 4.0
0
Zinc (Zn), % 2.0 to 3.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0