MakeItFrom.com
Menu (ESC)

EN-MC65210 Magnesium vs. CR007A Copper

EN-MC65210 magnesium belongs to the magnesium alloys classification, while CR007A copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65210 magnesium and the bottom bar is CR007A copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
120
Elongation at Break, % 2.8
15
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 17
43
Tensile Strength: Ultimate (UTS), MPa 270
230
Tensile Strength: Yield (Proof), MPa 200
140

Thermal Properties

Latent Heat of Fusion, J/g 340
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 610
1090
Melting Onset (Solidus), °C 540
1040
Specific Heat Capacity, J/kg-K 970
390
Thermal Conductivity, W/m-K 110
380
Thermal Expansion, µm/m-K 26
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
100
Electrical Conductivity: Equal Weight (Specific), % IACS 110
100

Otherwise Unclassified Properties

Density, g/cm3 2.0
9.0
Embodied Carbon, kg CO2/kg material 27
2.6
Embodied Energy, MJ/kg 220
41

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
31
Resilience: Unit (Modulus of Resilience), kJ/m3 450
83
Stiffness to Weight: Axial, points 12
7.2
Stiffness to Weight: Bending, points 59
18
Strength to Weight: Axial, points 38
7.1
Strength to Weight: Bending, points 47
9.3
Thermal Diffusivity, mm2/s 58
110
Thermal Shock Resistance, points 17
8.1

Alloy Composition

Antimony (Sb), % 0
0 to 0.00040
Arsenic (As), % 0
0 to 0.00050
Bismuth (Bi), % 0
0 to 0.00020
Copper (Cu), % 0 to 0.030
99.994 to 100
Iron (Fe), % 0 to 0.010
0 to 0.0010
Lead (Pb), % 0
0 to 0.00050
Magnesium (Mg), % 92.6 to 95.6
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.0050
0
Selenium (Se), % 0
0 to 0.00020
Silicon (Si), % 0 to 0.010
0
Silver (Ag), % 2.0 to 3.0
0 to 0.0025
Sulfur (S), % 0
0 to 0.0015
Tellurium (Te), % 0
0 to 0.00020
Unspecified Rare Earths, % 2.0 to 3.0
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0