MakeItFrom.com
Menu (ESC)

EN-MC65210 Magnesium vs. Grade 38 Titanium

EN-MC65210 magnesium belongs to the magnesium alloys classification, while grade 38 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65210 magnesium and the bottom bar is grade 38 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
110
Elongation at Break, % 2.8
11
Fatigue Strength, MPa 110
530
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 17
40
Shear Strength, MPa 150
600
Tensile Strength: Ultimate (UTS), MPa 270
1000
Tensile Strength: Yield (Proof), MPa 200
910

Thermal Properties

Latent Heat of Fusion, J/g 340
410
Maximum Temperature: Mechanical, °C 170
330
Melting Completion (Liquidus), °C 610
1620
Melting Onset (Solidus), °C 540
1570
Specific Heat Capacity, J/kg-K 970
550
Thermal Conductivity, W/m-K 110
8.0
Thermal Expansion, µm/m-K 26
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.4

Otherwise Unclassified Properties

Density, g/cm3 2.0
4.5
Embodied Carbon, kg CO2/kg material 27
35
Embodied Energy, MJ/kg 220
560

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
110
Resilience: Unit (Modulus of Resilience), kJ/m3 450
3840
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 59
35
Strength to Weight: Axial, points 38
62
Strength to Weight: Bending, points 47
49
Thermal Diffusivity, mm2/s 58
3.2
Thermal Shock Resistance, points 17
72

Alloy Composition

Aluminum (Al), % 0
3.5 to 4.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 0 to 0.030
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.010
1.2 to 1.8
Magnesium (Mg), % 92.6 to 95.6
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.0050
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0.2 to 0.3
Silicon (Si), % 0 to 0.010
0
Silver (Ag), % 2.0 to 3.0
0
Titanium (Ti), % 0
89.9 to 93.1
Unspecified Rare Earths, % 2.0 to 3.0
0
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0
0 to 0.4