MakeItFrom.com
Menu (ESC)

EN-MC65220 Magnesium vs. EN 1.4901 Stainless Steel

EN-MC65220 magnesium belongs to the magnesium alloys classification, while EN 1.4901 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65220 magnesium and the bottom bar is EN 1.4901 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 2.2
19
Fatigue Strength, MPa 110
310
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
76
Shear Strength, MPa 150
460
Tensile Strength: Ultimate (UTS), MPa 270
740
Tensile Strength: Yield (Proof), MPa 200
490

Thermal Properties

Latent Heat of Fusion, J/g 340
260
Maximum Temperature: Mechanical, °C 160
650
Melting Completion (Liquidus), °C 610
1490
Melting Onset (Solidus), °C 550
1450
Specific Heat Capacity, J/kg-K 980
470
Thermal Conductivity, W/m-K 110
26
Thermal Expansion, µm/m-K 26
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
8.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 80
11
Density, g/cm3 1.9
7.9
Embodied Carbon, kg CO2/kg material 27
2.8
Embodied Energy, MJ/kg 210
40

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5
120
Resilience: Unit (Modulus of Resilience), kJ/m3 450
620
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
24
Strength to Weight: Axial, points 40
26
Strength to Weight: Bending, points 49
23
Thermal Diffusivity, mm2/s 61
6.9
Thermal Shock Resistance, points 17
23

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0
8.5 to 9.5
Copper (Cu), % 0.050 to 0.1
0
Iron (Fe), % 0 to 0.010
85.8 to 89.1
Magnesium (Mg), % 93.8 to 96.8
0
Manganese (Mn), % 0 to 0.15
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 0 to 0.0050
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.010
0 to 0.5
Silver (Ag), % 1.3 to 1.7
0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Unspecified Rare Earths, % 1.5 to 3.0
0
Vanadium (V), % 0
0.15 to 0.25
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0 to 0.010
Residuals, % 0 to 0.010
0