MakeItFrom.com
Menu (ESC)

EN-MC65220 Magnesium vs. EN 2.4952 Nickel

EN-MC65220 magnesium belongs to the magnesium alloys classification, while EN 2.4952 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65220 magnesium and the bottom bar is EN 2.4952 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 2.2
17
Fatigue Strength, MPa 110
370
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
74
Shear Strength, MPa 150
700
Tensile Strength: Ultimate (UTS), MPa 270
1150
Tensile Strength: Yield (Proof), MPa 200
670

Thermal Properties

Latent Heat of Fusion, J/g 340
330
Maximum Temperature: Mechanical, °C 160
980
Melting Completion (Liquidus), °C 610
1350
Melting Onset (Solidus), °C 550
1300
Specific Heat Capacity, J/kg-K 980
470
Thermal Conductivity, W/m-K 110
12
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 80
55
Density, g/cm3 1.9
8.3
Embodied Carbon, kg CO2/kg material 27
9.8
Embodied Energy, MJ/kg 210
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5
170
Resilience: Unit (Modulus of Resilience), kJ/m3 450
1180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 62
23
Strength to Weight: Axial, points 40
38
Strength to Weight: Bending, points 49
29
Thermal Diffusivity, mm2/s 61
3.1
Thermal Shock Resistance, points 17
33

Alloy Composition

Aluminum (Al), % 0
1.0 to 1.8
Boron (B), % 0
0 to 0.0080
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0.050 to 0.1
0 to 0.2
Iron (Fe), % 0 to 0.010
0 to 1.5
Magnesium (Mg), % 93.8 to 96.8
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0 to 0.0050
65 to 79.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.010
0 to 1.0
Silver (Ag), % 1.3 to 1.7
0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
1.8 to 2.7
Unspecified Rare Earths, % 1.5 to 3.0
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0