MakeItFrom.com
Menu (ESC)

EN-MC65220 Magnesium vs. C16200 Copper

EN-MC65220 magnesium belongs to the magnesium alloys classification, while C16200 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65220 magnesium and the bottom bar is C16200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
120
Elongation at Break, % 2.2
2.0 to 56
Fatigue Strength, MPa 110
100 to 210
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 17
43
Shear Strength, MPa 150
190 to 390
Tensile Strength: Ultimate (UTS), MPa 270
240 to 550
Tensile Strength: Yield (Proof), MPa 200
48 to 470

Thermal Properties

Latent Heat of Fusion, J/g 340
210
Maximum Temperature: Mechanical, °C 160
370
Melting Completion (Liquidus), °C 610
1080
Melting Onset (Solidus), °C 550
1030
Specific Heat Capacity, J/kg-K 980
380
Thermal Conductivity, W/m-K 110
360
Thermal Expansion, µm/m-K 26
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
90
Electrical Conductivity: Equal Weight (Specific), % IACS 120
90

Otherwise Unclassified Properties

Base Metal Price, % relative 80
30
Density, g/cm3 1.9
9.0
Embodied Carbon, kg CO2/kg material 27
2.6
Embodied Energy, MJ/kg 210
41

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5
10 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 450
10 to 970
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 62
18
Strength to Weight: Axial, points 40
7.4 to 17
Strength to Weight: Bending, points 49
9.6 to 17
Thermal Diffusivity, mm2/s 61
100
Thermal Shock Resistance, points 17
8.7 to 20

Alloy Composition

Cadmium (Cd), % 0
0.7 to 1.2
Copper (Cu), % 0.050 to 0.1
98.6 to 99.3
Iron (Fe), % 0 to 0.010
0 to 0.2
Magnesium (Mg), % 93.8 to 96.8
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.010
0
Silver (Ag), % 1.3 to 1.7
0
Unspecified Rare Earths, % 1.5 to 3.0
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0