MakeItFrom.com
Menu (ESC)

EN-MC65220 Magnesium vs. S33228 Stainless Steel

EN-MC65220 magnesium belongs to the magnesium alloys classification, while S33228 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65220 magnesium and the bottom bar is S33228 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
190
Elastic (Young's, Tensile) Modulus, GPa 44
200
Elongation at Break, % 2.2
34
Fatigue Strength, MPa 110
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
79
Shear Strength, MPa 150
380
Tensile Strength: Ultimate (UTS), MPa 270
570
Tensile Strength: Yield (Proof), MPa 200
210

Thermal Properties

Latent Heat of Fusion, J/g 340
310
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 610
1410
Melting Onset (Solidus), °C 550
1360
Specific Heat Capacity, J/kg-K 980
470
Thermal Expansion, µm/m-K 26
16

Otherwise Unclassified Properties

Base Metal Price, % relative 80
37
Density, g/cm3 1.9
8.0
Embodied Carbon, kg CO2/kg material 27
6.2
Embodied Energy, MJ/kg 210
89

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5
150
Resilience: Unit (Modulus of Resilience), kJ/m3 450
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
24
Strength to Weight: Axial, points 40
20
Strength to Weight: Bending, points 49
19
Thermal Shock Resistance, points 17
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.025
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 0.050 to 0.1
0
Iron (Fe), % 0 to 0.010
36.5 to 42.3
Magnesium (Mg), % 93.8 to 96.8
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0 to 0.0050
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.010
0 to 0.3
Silver (Ag), % 1.3 to 1.7
0
Sulfur (S), % 0
0 to 0.015
Unspecified Rare Earths, % 1.5 to 3.0
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0