MakeItFrom.com
Menu (ESC)

EN-MC65220 Magnesium vs. S82011 Stainless Steel

EN-MC65220 magnesium belongs to the magnesium alloys classification, while S82011 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65220 magnesium and the bottom bar is S82011 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
250
Elastic (Young's, Tensile) Modulus, GPa 44
200
Elongation at Break, % 2.2
34
Fatigue Strength, MPa 110
410
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 17
78
Shear Strength, MPa 150
490
Tensile Strength: Ultimate (UTS), MPa 270
730
Tensile Strength: Yield (Proof), MPa 200
510

Thermal Properties

Latent Heat of Fusion, J/g 340
290
Maximum Temperature: Mechanical, °C 160
1010
Melting Completion (Liquidus), °C 610
1420
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 980
480
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 80
12
Density, g/cm3 1.9
7.7
Embodied Carbon, kg CO2/kg material 27
2.6
Embodied Energy, MJ/kg 210
37

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5
220
Resilience: Unit (Modulus of Resilience), kJ/m3 450
660
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
25
Strength to Weight: Axial, points 40
27
Strength to Weight: Bending, points 49
24
Thermal Diffusivity, mm2/s 61
4.0
Thermal Shock Resistance, points 17
20

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20.5 to 23.5
Copper (Cu), % 0.050 to 0.1
0 to 0.5
Iron (Fe), % 0 to 0.010
68.6 to 76.3
Magnesium (Mg), % 93.8 to 96.8
0
Manganese (Mn), % 0 to 0.15
2.0 to 3.0
Molybdenum (Mo), % 0
0.1 to 1.0
Nickel (Ni), % 0 to 0.0050
1.0 to 2.0
Nitrogen (N), % 0
0.15 to 0.27
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 1.0
Silver (Ag), % 1.3 to 1.7
0
Sulfur (S), % 0
0 to 0.020
Unspecified Rare Earths, % 1.5 to 3.0
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0