MakeItFrom.com
Menu (ESC)

EN-MC95310 Magnesium vs. ASTM A387 Grade 21L Class 1

EN-MC95310 magnesium belongs to the magnesium alloys classification, while ASTM A387 grade 21L class 1 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC95310 magnesium and the bottom bar is ASTM A387 grade 21L class 1.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
150
Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 2.2
21
Fatigue Strength, MPa 110
160
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
74
Shear Strength, MPa 160
310
Tensile Strength: Ultimate (UTS), MPa 280
500
Tensile Strength: Yield (Proof), MPa 190
230

Thermal Properties

Latent Heat of Fusion, J/g 330
260
Maximum Temperature: Mechanical, °C 170
480
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 540
1430
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 51
41
Thermal Expansion, µm/m-K 25
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 50
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 34
4.1
Density, g/cm3 1.9
7.9
Embodied Carbon, kg CO2/kg material 29
1.8
Embodied Energy, MJ/kg 260
23
Embodied Water, L/kg 900
62

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
84
Resilience: Unit (Modulus of Resilience), kJ/m3 420
140
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 61
24
Strength to Weight: Axial, points 40
18
Strength to Weight: Bending, points 49
18
Thermal Diffusivity, mm2/s 28
11
Thermal Shock Resistance, points 18
14

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
2.8 to 3.3
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
94.4 to 96.1
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.9 to 93.4
0
Manganese (Mn), % 0 to 0.15
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.0050
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.010
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0