MakeItFrom.com
Menu (ESC)

EN-MC95310 Magnesium vs. EN 1.4006 Stainless Steel

EN-MC95310 magnesium belongs to the magnesium alloys classification, while EN 1.4006 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC95310 magnesium and the bottom bar is EN 1.4006 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 2.2
16 to 23
Fatigue Strength, MPa 110
150 to 300
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
76
Shear Strength, MPa 160
370 to 460
Tensile Strength: Ultimate (UTS), MPa 280
590 to 750
Tensile Strength: Yield (Proof), MPa 190
230 to 510

Thermal Properties

Latent Heat of Fusion, J/g 330
270
Maximum Temperature: Mechanical, °C 170
740
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 540
1400
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 51
30
Thermal Expansion, µm/m-K 25
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 50
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 34
7.0
Density, g/cm3 1.9
7.7
Embodied Carbon, kg CO2/kg material 29
1.9
Embodied Energy, MJ/kg 260
27
Embodied Water, L/kg 900
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
99 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 420
140 to 660
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
25
Strength to Weight: Axial, points 40
21 to 27
Strength to Weight: Bending, points 49
20 to 24
Thermal Diffusivity, mm2/s 28
8.1
Thermal Shock Resistance, points 18
21 to 26

Alloy Composition

Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
83.1 to 88.4
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.9 to 93.4
0
Manganese (Mn), % 0 to 0.15
0 to 1.5
Nickel (Ni), % 0 to 0.0050
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0