MakeItFrom.com
Menu (ESC)

EN-MC95310 Magnesium vs. EN 1.4558 Stainless Steel

EN-MC95310 magnesium belongs to the magnesium alloys classification, while EN 1.4558 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC95310 magnesium and the bottom bar is EN 1.4558 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 2.2
39
Fatigue Strength, MPa 110
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
77
Shear Strength, MPa 160
350
Tensile Strength: Ultimate (UTS), MPa 280
510
Tensile Strength: Yield (Proof), MPa 190
200

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1400
Melting Onset (Solidus), °C 540
1350
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 51
12
Thermal Expansion, µm/m-K 25
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 50
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 34
31
Density, g/cm3 1.9
8.0
Embodied Carbon, kg CO2/kg material 29
5.5
Embodied Energy, MJ/kg 260
77
Embodied Water, L/kg 900
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
160
Resilience: Unit (Modulus of Resilience), kJ/m3 420
100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
24
Strength to Weight: Axial, points 40
18
Strength to Weight: Bending, points 49
18
Thermal Diffusivity, mm2/s 28
3.1
Thermal Shock Resistance, points 18
12

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.45
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
39.2 to 47.9
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.9 to 93.4
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0 to 0.0050
32 to 35
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.010
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.6
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0