MakeItFrom.com
Menu (ESC)

EN-MC95310 Magnesium vs. EN 1.4592 Stainless Steel

EN-MC95310 magnesium belongs to the magnesium alloys classification, while EN 1.4592 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC95310 magnesium and the bottom bar is EN 1.4592 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
210
Elongation at Break, % 2.2
23
Fatigue Strength, MPa 110
340
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 17
82
Shear Strength, MPa 160
400
Tensile Strength: Ultimate (UTS), MPa 280
630
Tensile Strength: Yield (Proof), MPa 190
500

Thermal Properties

Latent Heat of Fusion, J/g 330
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 51
17
Thermal Expansion, µm/m-K 25
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 50
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 34
18
Density, g/cm3 1.9
7.7
Embodied Carbon, kg CO2/kg material 29
3.8
Embodied Energy, MJ/kg 260
52
Embodied Water, L/kg 900
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
130
Resilience: Unit (Modulus of Resilience), kJ/m3 420
610
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 61
26
Strength to Weight: Axial, points 40
23
Strength to Weight: Bending, points 49
21
Thermal Diffusivity, mm2/s 28
4.6
Thermal Shock Resistance, points 18
20

Alloy Composition

Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
62.6 to 68.4
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.9 to 93.4
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0 to 0.0050
0
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.010
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0.15 to 0.8
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0