MakeItFrom.com
Menu (ESC)

EN-MC95310 Magnesium vs. EN 1.4905 Stainless Steel

EN-MC95310 magnesium belongs to the magnesium alloys classification, while EN 1.4905 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC95310 magnesium and the bottom bar is EN 1.4905 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 2.2
19
Fatigue Strength, MPa 110
330
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
76
Shear Strength, MPa 160
460
Tensile Strength: Ultimate (UTS), MPa 280
740
Tensile Strength: Yield (Proof), MPa 190
510

Thermal Properties

Latent Heat of Fusion, J/g 330
270
Maximum Temperature: Mechanical, °C 170
660
Melting Completion (Liquidus), °C 650
1480
Melting Onset (Solidus), °C 540
1440
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 51
26
Thermal Expansion, µm/m-K 25
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
3.7
Electrical Conductivity: Equal Weight (Specific), % IACS 50
4.2

Otherwise Unclassified Properties

Base Metal Price, % relative 34
9.5
Density, g/cm3 1.9
7.9
Embodied Carbon, kg CO2/kg material 29
2.8
Embodied Energy, MJ/kg 260
40
Embodied Water, L/kg 900
90

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
130
Resilience: Unit (Modulus of Resilience), kJ/m3 420
680
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
24
Strength to Weight: Axial, points 40
26
Strength to Weight: Bending, points 49
23
Thermal Diffusivity, mm2/s 28
7.0
Thermal Shock Resistance, points 18
25

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Boron (B), % 0
0.00050 to 0.0050
Carbon (C), % 0
0.090 to 0.13
Chromium (Cr), % 0
8.5 to 9.5
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
86.2 to 88.8
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.9 to 93.4
0
Manganese (Mn), % 0 to 0.15
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.0050
0.1 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.050 to 0.090
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.010
0.1 to 0.5
Sulfur (S), % 0
0 to 0.010
Tungsten (W), % 0
0.9 to 1.1
Unspecified Rare Earths, % 1.5 to 4.0
0
Vanadium (V), % 0
0.18 to 0.25
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0