MakeItFrom.com
Menu (ESC)

EN-MC95310 Magnesium vs. EN 1.5662 Steel

EN-MC95310 magnesium belongs to the magnesium alloys classification, while EN 1.5662 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC95310 magnesium and the bottom bar is EN 1.5662 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
220 to 230
Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 2.2
20
Fatigue Strength, MPa 110
380 to 450
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
73
Shear Strength, MPa 160
460 to 470
Tensile Strength: Ultimate (UTS), MPa 280
740 to 750
Tensile Strength: Yield (Proof), MPa 190
550 to 660

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 960
470
Thermal Expansion, µm/m-K 25
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
8.7
Electrical Conductivity: Equal Weight (Specific), % IACS 50
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 34
7.5
Density, g/cm3 1.9
8.0
Embodied Carbon, kg CO2/kg material 29
2.3
Embodied Energy, MJ/kg 260
31
Embodied Water, L/kg 900
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 420
810 to 1150
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 61
24
Strength to Weight: Axial, points 40
26
Strength to Weight: Bending, points 49
23
Thermal Shock Resistance, points 18
22

Alloy Composition

Carbon (C), % 0
0 to 0.1
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
88.6 to 91.2
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.9 to 93.4
0
Manganese (Mn), % 0 to 0.15
0.3 to 0.8
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0 to 0.0050
8.5 to 10
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.010
0 to 0.35
Sulfur (S), % 0
0 to 0.0050
Unspecified Rare Earths, % 1.5 to 4.0
0
Vanadium (V), % 0
0 to 0.050
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0