MakeItFrom.com
Menu (ESC)

EN-MC95310 Magnesium vs. C49300 Brass

EN-MC95310 magnesium belongs to the magnesium alloys classification, while C49300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC95310 magnesium and the bottom bar is C49300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
100
Elongation at Break, % 2.2
4.5 to 20
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 17
40
Shear Strength, MPa 160
270 to 290
Tensile Strength: Ultimate (UTS), MPa 280
430 to 520
Tensile Strength: Yield (Proof), MPa 190
210 to 410

Thermal Properties

Latent Heat of Fusion, J/g 330
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 650
880
Melting Onset (Solidus), °C 540
840
Specific Heat Capacity, J/kg-K 960
380
Thermal Conductivity, W/m-K 51
88
Thermal Expansion, µm/m-K 25
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
15
Electrical Conductivity: Equal Weight (Specific), % IACS 50
17

Otherwise Unclassified Properties

Base Metal Price, % relative 34
26
Density, g/cm3 1.9
8.0
Embodied Carbon, kg CO2/kg material 29
3.0
Embodied Energy, MJ/kg 260
50
Embodied Water, L/kg 900
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
21 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 420
220 to 800
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 61
19
Strength to Weight: Axial, points 40
15 to 18
Strength to Weight: Bending, points 49
16 to 18
Thermal Diffusivity, mm2/s 28
29
Thermal Shock Resistance, points 18
14 to 18

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Antimony (Sb), % 0
0 to 0.5
Bismuth (Bi), % 0
0.5 to 2.0
Copper (Cu), % 0 to 0.030
58 to 62
Iron (Fe), % 0 to 0.010
0 to 0.1
Lead (Pb), % 0
0 to 0.010
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.9 to 93.4
0
Manganese (Mn), % 0 to 0.15
0 to 0.030
Nickel (Ni), % 0 to 0.0050
0 to 1.5
Phosphorus (P), % 0
0 to 0.2
Selenium (Se), % 0
0 to 0.2
Silicon (Si), % 0 to 0.010
0 to 0.1
Tin (Sn), % 0
1.0 to 1.8
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
30.6 to 40.5
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0
0 to 0.5