MakeItFrom.com
Menu (ESC)

EN-MC95310 Magnesium vs. N08925 Stainless Steel

EN-MC95310 magnesium belongs to the magnesium alloys classification, while N08925 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC95310 magnesium and the bottom bar is N08925 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 2.2
45
Fatigue Strength, MPa 110
310
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
80
Shear Strength, MPa 160
470
Tensile Strength: Ultimate (UTS), MPa 280
680
Tensile Strength: Yield (Proof), MPa 190
340

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 540
1410
Specific Heat Capacity, J/kg-K 960
460
Thermal Conductivity, W/m-K 51
13
Thermal Expansion, µm/m-K 25
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 50
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 34
33
Density, g/cm3 1.9
8.1
Embodied Carbon, kg CO2/kg material 29
6.2
Embodied Energy, MJ/kg 260
84
Embodied Water, L/kg 900
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
250
Resilience: Unit (Modulus of Resilience), kJ/m3 420
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
24
Strength to Weight: Axial, points 40
23
Strength to Weight: Bending, points 49
21
Thermal Diffusivity, mm2/s 28
3.5
Thermal Shock Resistance, points 18
15

Alloy Composition

Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0 to 0.030
0.8 to 1.5
Iron (Fe), % 0 to 0.010
42.7 to 50.1
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.9 to 93.4
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0 to 0.0050
24 to 26
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.010
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0